Hidden Markov Models for ILM Appliance Identification

نویسندگان

  • Antonio Ridi
  • Jean Hennebert
چکیده

The automatic recognition of appliances through the monitoring of their electricity consumption finds many applications in smart buildings. In this paper we discuss the use of Hidden Markov Models (HMMs) for appliance recognition using so-called intrusive load monitoring (ILM) devices. Our motivation is found in the observation of electric signatures of appliances that usually show time varying profiles depending to the use made of the appliance or to the intrinsic internal operating of the appliance. To determine the benefit of such modelling, we propose a comparison of stateless modelling based on Gaussian mixture models and state-based models using Hidden Markov Models. The comparison is run on the publicly available database ACS-F1. We also compare different approaches to determine the best model topologies. More specifically we compare the use of a priori information on the device, a procedure based on a criteria of log-likelihood maximization and a heuristic approach. c © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of Elhadi M. Shakshuki.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

Person Movement Prediction Using Hidden Markov Models

Abstract: Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user’s desires and acts proactively. This paper introduces Hidden Markov Models, in order to anticipate the next movement of some persons. The optimal configuration of the model is determined by evaluating some movement sequences of real...

متن کامل

Using Hidden Markov Models for Iterative Non-intrusive Appliance Monitoring

Non-intrusive appliance load monitoring is the process of breaking down a household’s total electricity consumption into its contributing appliances. In this paper we propose an approach by which individual appliances are iteratively separated from the aggregate load. Our approach does not require training data to be collected by sub-metering individual appliances. Instead, prior models of gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014